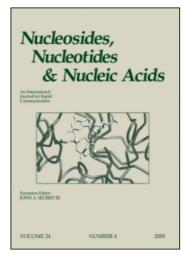
This article was downloaded by:


On: 26 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-

41 Mortimer Street, London W1T 3JH, UK

Nucleosides, Nucleotides and Nucleic Acids

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713597286

Nucleophilic Substitution Reactions of 5-Bromo-6-methyluridines

Mallela S. P. Sarma^a; Robert S. Klein^a; Brian A. Otter^a

^a Department of Oncology, Montefiore Medical Center, Albert Einstein College of Medicine Cancer Center and Medicinal Chemistry Laboratory, Bronx, NY

To cite this Article Sarma, Mallela S. P. , Klein, Robert S. and Otter, Brian A.(1994) 'Nucleophilic Substitution Reactions of 5-Bromo-6-methyluridines', Nucleosides, Nucleotides and Nucleic Acids, 13: 1, 369-378

To link to this Article: DOI: 10.1080/15257779408013247 URL: http://dx.doi.org/10.1080/15257779408013247

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

NUCLEOPHILIC SUBSTITUTION REACTIONS OF 5-BROMO-6-METHYLURIDINES.

Mallela S. P. Sarma, Robert S. Klein and Brian A. Otter.

Albert Einstein College of Medicine Cancer Center and Medicinal Chemistry Laboratory, Department of Oncology, Montefiore Medical Center, Bronx, NY 10467

Abstract: The reactions of the 5-bromo-6-methyl-2', 3'-O-isopropylideneuridines 9 and 10 with a number of nucleophiles in hot DMF have been investigated. With acetate ion as the nucleophile, either the 5-acetoxy- (11,12) or the 6-acetoxymethyl- (15) products can be obtained in modest yield depending upon the exact reaction conditions. With nitrogen nucleophiles (aniline or p-methoxybenzylamine) reaction takes place at the 6-methyl carbon, whereas with sulfur nucleophiles (thiophenol, thioacetate) only the 5-substituted products are obtained.

In work published a number of years ago, Hirota and co-workers¹ demonstrated that the reaction between 5-bromo-6-methyluracils (1) and nucleophiles such as aromatic amines or acetate ion in hot N,N-dimethylformamide leads efficiently to the corresponding 6-(substituted-methyl)uracils 3 (X = NHAr or OAc, $R_1 = alkyl$, $R_2 = alkyl$ or H). These interesting transformations are thought to proceed as shown via the methylene tautomer 2. Although a number of related reactions have been reported for various 1,3-dialkyluracil bases,² we are aware of only a single example from the area of nucleoside chemistry. That example concerns our own work with the cyclonucleoside 4, where the triflate group was found³ to undergo an allylic displacement by formate ion to give 5. Extension of these reactions to more conventional nucleosides such as 6 could afford potentially useful syntheses of 6-substituted products of type 7, and provide an alternative to the lithiation approach⁴ to 6-substituted uridines. Furthermore, the allylic displacement reaction suggests an attractive method for functionalizing the methylene

This paper is dedicated to the memory of Professor Roland K. Robins.

group of homo-nucleosides such as 8, thereby providing intermediates for further elaboration into bicyclic C-nucleosides.

We have recently developed a high-yielding synthesis of the 5-bromo-6-methyluridines 6 (R = Bz or H) for another study.⁵ Rather surprisingly, these simple nucleosides have not been reported before. Nucleoside 6 (R = H) has been further converted into the protected compounds 9 and 10, and we report in the present paper the results of a preliminary survey of their reactions with a variety of nucleophiles.

Nucleoside 9 reacts sluggishly with sodium acetate in DMF at 70 °C and more rapidly at 100 °C (table entry 1), but the product is the 5-acetoxy nucleoside 11 rather than the desired 6-acetoxymethyl compound. Nucleoside 11 is easily recognized from

Entry	Starting material	Nucleophile	Equiv.	Temp °C	Time Hrs	Product	Yield %
1	9	Anhyd. NaOAc	1.0	100	2	11	43*
2	10	Anhyd. NaOAc	1.2‡	70	10	12	23*
3	10	Anhyd. NaOAc	1.2	150	1	15	40
4	9	C ₆ H ₅ NH ₂	1.2	150	2	18	29
5	10	para – OMe-	2.0	150	1	16	29
		C ₆ H ₄ CH ₂ NH ₂]	and	i
						17	15
6	9	C ₆ H ₅ SH†	1.2	150	2	14	40
7	10	KSCOCH ₃	1.2	70	1	13	56

^{*} Yield corrected for recovered starting material. ‡ An additional 1.2 equiv. of NaOAc was added at 5 hrs. † The reaction mixture also contained 1 equivalent of triethylamine.

its NMR and UV spectral properties. Increasing the reaction temperature leads only to intractable mixtures. Nucleoside 10 similarly affords the 5-acetoxy nucleoside 12 at 70 °C (entry 2). However, careful examination of the reaction mixture by TLC, using multiple developments, revealed *trace* amounts of another component that was found to be the 6-acetoxymethyl product 15. The 6-substituted product 15 was obtained in much higher yield by adding sodium acetate to a boiling (150 °C) solution of 10 in DMF (entry 3), and under these conditions it is the 5-acetoxy nucleoside 12 that is present in only trace amounts. At intermediate temperatures, for example 100 °C, TLC analysis indicates that both 12 and 15 are formed from 10. In order to investigate the possibility that 15 might arise *via* a rearrangement process, we heated samples of 12 in DMF at 150 °C under nitrogen for 1 hr, both in the presence and absence of sodium acetate. However, 12 is essentially stable under these conditions, and nucleoside 15 was not detectable in either reaction mixture. We conclude that 15 is formed from 10 by a mechanism that operates efficiently only at higher temperatures.

The striking temperature dependence seen for the formation of 12 and 15 is similar to the results reported by Hirota $et\ al^{1b}$ for the reaction of 1 ($R_1=R_2=Me$) with amines such as morpholine in DMF. Thus, the 5-morpholino product was formed in reactions run at 100 and 150 °C, but the 6-morpholinomethyl product was obtained only at the higher temperature.

The reaction of the TBDMS nucleoside 10 with aniline in hot DMF is complicated by extensive desilylation: however, nucleoside 9 affords the 6-anilinomethyl product 18 in low yield (entry 4). The TBDMS group of 10 survives when p-methoxybenzylamine is used as the nucleophile (entry 5) and the 6-substituted product 16 was obtained, again in low yield. In addition, we isolated a significant amount of a second product which we have identified as the N,N-dimethylaminomethyl nucleoside 17 from its ¹H- and ¹³C-NMR spectra. Compound 17 is not evident in any of the other reaction mixtures listed in the table, and its dimethylamino group presumably derives ultimately from DMF. In fact, various amines are known⁶ to undergo exchange reactions with DMF, and it appears that p-methoxybenzylamine, being a much stronger base than aniline (entry 4), releases dimethylamine which can compete in the substitution reaction. A separate experiment established that 16 is stable under the conditions of its formation, and that it is therefore not a precursor of 17. Interestingly, reducing the temperature of the reactions of either

of the amine nucleophiles with 10 does not lead to the formation of the corresponding 5-substituted products, so in this regard the amine reactions differ from their acetate ion counterparts.

Finally, the sulfur nucleophile thiophenol (entry 6) appears to afford only the 5-substituted product (14), even at 150 °C. Extensive desilylation accompanies the reaction of 10 with thiophenol, but the products are again the 5-substituted compounds. Potassium thioacetate (entry 7) likewise leads to a fair yield of the 5-thioacetyl nucleoside 13, but only at lower temperatures. At 150 °C, the reaction mixture of 10

with potassium thioacetate is very complex, with substantial amounts of the debrominated product 19⁴ being formed together with smaller amounts of an unidentified product, which is definitely not a 6-(substituted-methyl) compound. The reaction between 10 and sodium cyanide (data not shown) also results in debromination to form 19 with no other recognizable products.

In summary, 5-bromo-6-methyluridines react with sodium acetate in DMF to give either the 5-acetoxy- or 6-acetoxymethyl- products in a temperature dependent manner. On the other hand, the amine nucleophiles examined gave only the 6-substituted products whereas sulfur nucleophiles have thus far afforded only 5-substituted products. It is possible that the observed yields could be improved by using other solvents or other reaction conditions. Studies toward that end are planned, together with a more detailed examination of the temperature dependency of the reactions with oxygen nucleophiles.

EXPERIMENTAL SECTION

 1 H- and 13 C-NMR spectra were obtained in CDCl₃ solution on a Varian XL-200 spectrometer. Internal TMS was used as a reference for proton spectra: 13 C-spectra were referenced to the solvent resonance. UV spectra were recorded on a Gilford Response II spectrophotometer. EI-Mass spectra were obtained on a Kratos Profile mass spectrometer; FAB-MS spectra were obtained on a Finegan MAT-90 instrument using glycerol as the matrix. Preparative TLC separations were performed on 1000 μ m 20 X

20 cm silica gel plates (Uniplates from Analtech, Inc.). Microanalyses were performed by M.H.W. Laboratories, Phoenix, Arizona. All evaporations were carried out under reduced pressure in a rotary evaporator.

5-Bromo-6-methyl-5'-*O*-(*tert*-butyldimethylsilyl)-2',3'-*O*-isopropylideneuridine (10). *tert*-Butyldimethylsilyl chloride (0.56 g, 3.73 mmol) was added to a solution of **9** (0.7 g, 1.86 mmol)⁵ in dry pyridine (20 mL), and the mixture was stirred at room temperature for 16 h. The reaction mixture was then evaporated to dryness and the residue was partitioned between water and chloroform. The organic phase was washed with water, dried and concentrated. Crystallization of the residue from hexane-ethyl acetate (4:1) afforded pure **10** (0.76 g, 83%), mp 119 - 120 °C; UV (70% MeOH) λ_{max} 277 nm, λ_{min} 244 nm, UV (pH 12) λ_{max} 277 nm, λ_{min} 255 nm; ¹H-NMR δ 9.02 (1H, br s, N3-H), 5.81 (1H, d, H-1')⁷, 5.20 (1H, dd, H-2'), 4.83 (1H, dd, H-3'), 4.15 (1H, 8-line m, H-4'), 3.82 and 3.78 (2H, 8-line m, H-5' and H-5"), 2.64 (3H, s, 6-Me), 1.55 and 1.34 (two 3H s, *MeCMe*), 0.89 (9H, s, SiBu-t), 0.05 (6H, s, SiMe), $J_{1',2'}$ = 1.3, $J_{2',3'}$ = 6.4, $J_{3',4'}$ = 4.5, $J_{4',5'}$ = 3.7, $J_{4',5''}$ = 8.3, $J_{5',5''}$ = 10.8 Hz.⁸

Anal. Calcd. for $C_{10}H_{21}BrN_{2}O_{6}Si$: C. 46.43: H. 6.36: Br. 16.26: N. 5.70.

Anal. Calcd. for $C_{19}H_{31}BrN_2O_6Si$: C, 46.43; H, 6.36; Br, 16.26; N, 5.70. Found: C,46.63, H, 6.35; Br, 16.11; N, 5.57.

General Procedures for Reactions of 9 and 10 with Nucleophiles.

- (1) High temperature reactions (table entries 3-6). A sample of 9 or 10 (300 450 mg) was dissolved in dry N,N-dimethylformamide (10 15 mL) and the solution was heated under nitrogen to the reflux point. The nucleophilic reagent was then added and refluxing was continued for the time indicated in the table. The cooled reaction mixture was evaporated to dryness and dichloromethane (60 mL) was added to the residue. The dichloromethane solution was washed with water, dried and concentrated. The products were purified by preparative TLC, using two or three developments in hexane:ethyl acetate (1:1, v/v) containing 0.5% acetic acid.
- (2) Lower temperature reactions (table entries 1,2 and 7). In these cases, both 9 (or 10) and the nucleophilic reagent were dissolved in DMF at room temperature, and the mixture was heated to the indicated temperature. After the appropriate reaction period, the mixture was worked-up as described above.

Many of the above reaction mixtures are complex and only the major components were isolated. The yields of the various products have not necessarily been optimized. The following products were obtained as colorless foams:

5-Acetoxy-6-methyl-5'-O-(tert-butyldimethylsilyl)-2',3'-O-isopropylideneuridine (12):

UV (70% MeOH) λ_{max} 266 nm, λ_{min} 236 nm. In alkaline solution, the UV absorption maximum shifts in a time-dependent manner to 306 nm, reflecting hydrolysis to the monoanion of the corresponding 5-hydroxy nucleoside. On subsequent acidification, the absorption shifts to 278 nm, as expected for the neutral 5-hydroxy product. ¹H-NMR for **12**: δ 9.16 (1H, br s, N3-H), 5.68 (1H, d, H-1'), 5.22 (1H, dd, H-2'), 4.83 (1H, dd, H-3'), 4.15 (1H, 8-line m, H-4'), 3.80 (2H, 8-line m, H-5' and H-5"), 2.32 (3H, s, OAc), 2.26 (3H, s, 6-Me), 1.54 and 1.34 (two 3H s, *MeCMe*), 0.89 (9H, s, SiBu-t) 0.06 (6H, s, SiMe), $J_{1',2'} = 1.3$, $J_{2',3'} = 6.4$, $J_{3',4'} = 4.5$ Hz; EI-MS m/z: 455.18497, [M-Me]⁺, (C₂₀H₃₁N₂O₈Si calcd. 455.18433); 413.13916 [M-Bu-t]⁺, (C₁₇H₂₅N₂O₈Si calcd. 413.13806).

5-Acetoxy-6-methyl-2',3'-O-isopropylideneuridine (11): UV (30% MeOH) λ_{max} 264 nm, λ_{min} 234 nm. The UV spectral changes observed in alkaline solution and on subsequent reacidification are essentially identical to those described above for 12. ¹H-NMR for 11: δ 9.22 (1H, br s, N3-H), 5.62 (1H, d, H-1'), 5.27 (1H, dd, H-2'), 5.04 (1H, dd, H-3'), 4.23 (1H, m, H-4'), 3.88 and 3.80 (2H, 8-line m, H-5' and H-5"), 2.33 (3H, s, OAc), 2.26 (3H, s, 6-Me), 1.56 and 1.36 (two 3H s, *MeCMe*), $J_{1',2'} = 2.4$, $J_{2',3'} = 6.6$, $J_{3',4'} = 4.0$, $J_{4',5'} = 2.7$, $J_{4',5''} = 4.4$, $J_{5',5''} = 12.1$ Hz. Anal. Calcd. for C₁₅H₂₀N₂O₆: C, 50.56: H, 5.66: N, 7.86. Found: C, 50.38. H.

Anal. Calcd. for $C_{15}H_{20}N_2O_8$: C, 50.56; H, 5.66; N, 7.86. Found: C, 50.38, H, 5.79; N, 7.64.

6-Acetoxymethyl-5'-O-(tert-butyldimethylsilyl)-2',3'-O-isopropylideneuridine (15): UV (70% MeOH) λ_{max} 261 nm, λ_{min} 231 nm, UV (pH 12) λ_{max} 262 nm, λ_{min} 248 nm; ¹H-NMR δ 9.12 (1H, br s, N3-H), 5.81 (1H, d, H-5, $J_{\text{NH},5}$ = 2.2 Hz), 5.57 (1H, d, H-1'), 5.21 (1H, dd, H-2'), 5.04 and 4.94 (two 1H dd, CH₂, J_{gem} = 14.4 Hz, J_{allylic} \approx 0.7Hz), 4.81 (1H, dd, H-3'), 4.12 (1H, 8-line m, H-4'), 3.81 (2H, 8-line m, H-5' and H-5"), 2.18 (3H, s, OAc), 1.54 and 1.39 (two 3H s, MeCMe), 0.89 (9H, s, SiBu-t) 0.05 (6H, s, SiMe), $J_{1',2'}$ = 1.5, $J_{2',3'}$ = 6.5, $J_{3',4'}$ = 4.6 Hz.

Anal. Calcd. for $C_{21}H_{34}N_2O_8Si$: C, 53.60; H, 7.28; N, 5.95. Found: C, 53.45, H, 7.07; N, 5.86.

6-(N-Phenylaminomethyl)-2',3'-O-isopropylideneuridine (**18**): UV (30% MeOH) λ_{max} 242, sh260 nm, λ_{min} 222 nm, UV (pH 12) λ_{max} 237, sh266 nm, λ_{min} 226 nm; ¹H-NMR δ 9.08 (1H, br s, N3-H), 7.21 (2H, m, *m*-Ph), 6.81 (1H, m, *p*-Ph), 6.62 (2H, m, *o*-Ph), 5.89 (1H, s, H-5), 5.70 (1H, d, H-1'), 5.29 (1H, dd, H-2'), 5.02 (1H, dd, H-3'), 4.24 (3H, m, H-4' and CH₂), 3.88 (1H, m, H-5'), 3.81 (1H, m, H-5"), 3.30 (1H, br s, 5'-OH), 1.51 and 1.35 (two 3H s, *MeCMe*), $J_{1',2'} = 2.7$, $J_{2',3'} = 6.6$, $J_{3',4'} = 3.8$, $J_{4',5'} = 2.6$, $J_{4',5''} = 4.7$, $J_{5',5''} = 12.2$ Hz.⁹

Anal. Calcd. for $C_{19}H_{23}N_3O_6$: C, 58.60; H, 5.95; N, 10.79. Found: C, 58.78, H, 6.00; N, 10.56.

6-(N-p-Methoxybenzylaminomethyl)-5'-O-(tert-butyldimethylsilyl)-2',3'-O-isopropylideneuridine (16): UV (70% MeOH) λ_{max} 261 nm, λ_{min} 235 nm, UV (pH 12) λ_{max} 264 nm, λ_{min} 248 nm; ¹H-NMR δ 9.43 (1H, br s, N3-H), 7.29 and 6.86 (two 2H m, C₆H₄) 6.06 (1H, d, H-1'), 5.76 (1H, s, H-5), 5.22 (1H, dd, H-2'), 4.82 (1H, dd, H-3'), 4.13 (1H, 8-line m, H-4'), 3.87-3.84 (7H, m, H5', H5", CH₂ and OMe), 3.66(2H, q, CH₂, J_{gem} = 14.6Hz), 1.58 and 1.37 (two 3H s, *MeCMe*), 0.89 (9H, s, SiBu-t) 0.06 (6H, s, SiMe), $J_{1',2'}$ = 1.1, $J_{2',3'}$ = 6.4, $J_{3',4'}$ = 4.2 Hz.

Anal. Calcd. for $C_{27}H_{41}N_3O_7Si$: C, 59.21; H, 7.54; N, 7.67. Found: C, 59.00, H, 7.43; N, 7.49.

6-(*N*, *N*-dimethylaminomethyl)-5'-O-(tert-butyldimethylsilyl)-2',3'-O-isopropylideneuridine (17) was obtained as a side-product in the preparation of 16; UV (70% MeOH) λ_{max} 262 nm, λ_{min} 233 nm, UV (pH 12) λ_{max} 263 nm, λ_{min} 247 nm; ¹H-NMR δ 8.76 (1H, br s, N3-H), 6.14 (1H, d, H-1'), 5.69 (1H, s, H-5), 5.22 (1H, dd, H-2'), 4.81 (1H, dd, H-3'), 4.16 (1H, 8-line m, H-4'), 3.80 (2H, 8-line m, H5' and H5"), 3.47 and 3.06 (two 1H d, CH₂, J_{gem} = 14.0 Hz), 2.29 (6H, s, NMe₂), 1.53 and 1.34 (two 3H s, *MeCMe*), 0.88 (9H, s, SiBu-t) 0.04 (6H, s, SiMe); ¹³C-NMR (CDCl₃ + 1 drop D₂O) δ 162.6(C-4), 153:1(C-2), 150.5(C-6), 113.4 (MeCMe), 103.9 (C-5, J_{gem} = 173 Hz), 91.4 (C-1'), 89.6(C-4'), 84.3(C-2'), 82.2(C-3'), 64.3(C-5', J_{gem} = 142 Hz), 60.9(CH₂, J_{gem} = 133 Hz), 45.0(NMe₂, J_{gem} = 135 Hz), 27.2 and 25.5

(MeCMe), 25.9 (SiCMe₃), 18.5 (SiCMe₃), -5.2 (SiMe₂), $J_{1',2'} = 1.1$, $J_{2',3'} = 6.4$, $J_{3',4'} = 4.2$ Hz; EI-MS m/z 455.24454 (8.1, M⁺[C₂₁H₃₇N₃O₆Si] = 455.24517).

S-Acetyl-6-methyl-5'-O-(tert-butyldimethylsilyl)-2',3'-O-isopropylidene-5-mercaptouridine (13): UV (50% MeOH) λ_{max} 216.5 and 272 nm, λ_{min} 242 nm. Adjustment of the pH to 12 results in the gradual shift of UV absorption to 256 nm and 321 nm, which corresponds to the values expected for the dianion of the parent 5-mercapto nucleoside¹⁰. The 321.5 nm absorption then decreases with time, reflecting the formation of the disulfide. However, in the presence of dithiothreitol, which stabilizes 5-mercaptouracils¹⁰, spectra for the monoanion (λ_{max} 330 nm, λ_{min} 294 nm) and the neutral molecule (λ_{max} 290, λ_{min} 274 nm) were obtained at pH 8 and pH 4, respectively. ¹H-NMR for 13: δ 10.25 (1H, br s, N3-H), 5.81 (1H, br s, H-1'), 5.24 (1H, dd, H-2'), 4.82 (1H, dd, H-3'), 4.14 (1H, 8-line m, H-4'), 3.80 (2H, 8-line m, H5' and H5"), 2.53 (3H, s, 6-Me), 2.42 (3H, s, SAc), 1.53 and 1.34 (two 3H s, MeCMe), 0.87 (9H, s, SiBu-t) 0.04 (6H, s, SiMe), $J_{1',2'}$ = 1.2, $J_{2',3'}$ = 6.4, $J_{3',4'}$ = 4.4 Hz. Anal. Calcd. for $C_{21}H_{34}N_{2}O_{7}SSi: C$, 51.83; H, 7.04; N, 5.76; S, 6.59. Found:

Anal. Calcd. for $C_{21}H_{34}N_2O_7SSi$: C, 51.83; H, 7.04; N, 5.76; S, 6.59. Found: C, 52.00, H, 7.18; N, 5.73; S, 6.41.

S-Phenyl-6-methyl-2',3'-O-isopropylidene-5-mercaptouridine (14): UV (30% MeOH) λ_{max} 246, sh268, sh306 nm, λ_{min} 224 nm, UV (pH 12) λ_{max} 246, sh270 nm, λ_{min} 230 nm; ¹H-NMR δ 9.90 (1H, br s, N3-H), 7.11-7.33 (5H, m, Ph), 5.79 (1H, d, H-1'), 5.28 (1H, dd, H-2'), 5.05 (1H, dd, H-3'), 4.24 (1H, m, H-4'), 3.88 and 3.81 (2H, 8-line m, H-5' and H-5"), 2.77 (3H, s, 6-Me), 1.56 and 1.35 (two 3H s, *MeCMe*), $J_{1',2'} = 2.2$, $J_{2',3'} = 6.6$, $J_{3',4'} = 4.2$, $J_{4',5'} = 2.7$, $J_{4',5''} = 4.8$, $J_{5',5''} = 12.2$ Hz; ⁹ FAB-MS (negative ion) m/z 405.1, [M-H]⁻, (calcd. for $C_{19}H_{21}N_2O_6S$, [M-H]⁻ 405.1).

Anal. Calcd. for $C_{19}H_{22}N_2O_6S$: C, 56.15; H, 5.46; N, 6.89; S, 7.89. Found: C, 55.96, H, 5.62; N, 6.60; S, 7.66.

Acknowledgements: This research was supported in part by PHS grants CA36517 and CA54272 from the National Cancer Institute, DHHS. Additional support from the Cancer Center Support Grant CA-13330 for studies carried out in the Nuclear Magnetic Resonance Facility and the Laboratory for Macromolecular Analysis (for MS) at the Albert Einstein College of Medicine is also acknowledged. We thank Dr. S. R. Wilson and staff (New York University) and Edward Nieves (AECOM) for the EI-MS and FAB-MS determinations, respectively.

REFERENCES AND NOTES

- (1) a) Senda, S.; Hirota, K. J. Chem. Soc. Chem Commun. 1974, 483. b) Hirota, K.; Yamada, Y.; Kitade, Y.; Senda, S. J. Chem. Soc. Perkin 1. 1981, 2943-2947.
- a) Kinoshita, T.; Nakahata, N.; Kouchi, A.; Furukawa, S. Chem. Pharm. Bull.
 1988, 36, 3887-3896. b) Kinoshita, T.; Takaishi, Y.; Okunaka, T.; Ohwada, T.;
 Furukawa, S. J. Heterocyclic. Chem., 1992, 29, 741-747.
- (3) Otter, B. A.; Patil, S. A.; Spada, M. R.; Jelicks, L. A.; Yoshimura, Y.; Matsuda, A.; Klein, R. S. *Nucleosides & Nucleotides* 1992, 11, 615-635.
- (4) Tanaka, H.; Hayakawa, H.; Shibata, S.; Haraguchi, K.; Miyasaka, T. *Nucleosides & Nucleotides* 1992, 11, 319-328, and references therein.
- (5) Sarma, M. S. P.; Megati, S.; Klein, R. S.; Otter, B. A. Unpublished results, (manuscript in preparation).
- (6) March, J. Advanced Organic Chemistry; Wiley-Interscience: New York, 1985; p 376. We thank the reviewers for bringing this possibility to our attention.
- (7) The H-1' resonances of 6-methyl and 6-(substituted-methyl)-2',3'-Oisopropylideneuridines are broadened by two previously unreported five-bond
 couplings, namely ${}^5J_{\text{H-1',N3-H}}$ and ${}^5J_{\text{H-1',Me}}$ (or ${}^5J_{\text{H-1',CH₂R}}$). These small couplings,
 which can be detected by decoupling experiments, can obscure the splitting of
 the H-1' resonances such that accurate values of $J_{1',2'}$ can be extracted only from
 the H-2' resonances. These couplings will be discussed in more detail in a
 forthcoming publication.
- (8) The chemical shifts of H-5' and H-5" and values of J_{4',5'}, J_{4',5''}, and J_{5',5''} were obtained by spectral simulation. Essentially identical splitting patterns for H-4', H-5' and H-5" were seen for all of the 5'-O-(tert-butyldimethylsilyl) nucleosides used in this study.
- (9) The chemical shifts for H-5' and H-5" and the coupling constants involving these two protons were obtained by simulation of the spectrum recorded after the addition of D₂O.
- (10) Bardos, T. J.; Kalman, T. I. J. Pharm. Sci., 1966, 55, 606-610.